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ABSTRACT 

 

The induction step in proof by induction requires some clever tricks in order to get 

the expected formula for 𝑛 = 𝑘 + 1, especially in statements with inequalities. The 

purpose of this study was to determine undergraduate students’ cognition 

regarding the induction step in proving inequality propositions in order to create 

opportunities to teach the principle of mathematical induction better. A class of 67 

students participated in the study on learning proof by induction using the 

problem-based approach. The Action-Process-Object-Schema theory was used to 

structure the study and the cyclic activities-class-discussion-exercises instructional 

approach was used to teach proof by induction. Data for the study was comprised 

of individual students’ written responses to a task of two questions and the 

transcriptions of the semi-structured interviews. The findings revealed that students 

at most showed indication of partial understanding of proof by induction. 

Executing the induction step sits at the heart of proof by induction and necessitates 

logical reasoning at the object-level conception. Inadvertently, the implication was 

the most challenging aspect in proof by induction. The majority of students made 

inroads in setting up the proof properly but could not succeed in proving that 

𝑃(𝑘) ⇒ 𝑃(𝑘 + 1). Some students had challenges of where to begin a proof, so 

much that they chose to start with direct substitution. In line with that, most 

students also concluded without deriving the expected formula required to draw a 

conclusion.  

Keywords: induction step; proof by induction; APOS-ACE teaching cycles; 

inequalities.  
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INTRODUCTION 

Proofs in mathematics induct to 

students to logical reasoning and the 

certainty of theorems. Proofs are 

systematic arguments that deduce the 

proposition from other statements that 

are known to be true. Proving a theory 

can be a daunting process for students 

and the logical reasoning and steps that 

goes with proofs is a skill that has to be 

learnt. Whilst most mathematics 

educators consider proofs to be a 

defining characteristic of mathematics, 

proofs are known to be difficult for 

students to master (Inglis, 2011). 

Stylianides et al. (2007) suggest two 

reasons for teaching mathematical 

proofs: they are necessary for a deeper 

understanding of mathematical concepts 

and students’ skill in doing proofs has 

potential to foster their mathematics 

competency. 

There are several types of proofs 

that students learn in undergraduate 

calculus and these include the principle 

of mathematical induction, proof by 

contrapositive, proof by contradiction, 

checking all cases, proof by counter-

example (Dubinsky, 1990) and many 

others encountered in undergraduate 

real analysis. The focus of this study is 

on the induction step of proof by 

induction. Induction is used to prove 

that a statement is valid for all cases of 

𝑛 ∈ ℕ. Proof by induction is used when 

there are a set of statements 

𝑃1, 𝑃2, 𝑃3, … , 𝑃𝑛, …, and there is need to 

prove that they are all true. It is 

executed in three steps, namely the 

basis, the inductive assumption and the 

induction steps. There are also 

categories of propositions that require 

the principle of mathematical induction, 

but introductory calculus courses focus 

mainly on three, which “… consists of 

methods of proof of a mathematical 

statement in the form of sequence, 

inequality, and division” (Adinata et al., 

2020, p. 1). 

In South Africa, deductive proofs 

commences in grade 11 (fourth year of 

secondary school) with the Euclidian 

geometry proofs. Mathematical 

induction “… is a rigorous form of 

deductive proof” (Ernest, 1984, p. 181) 

but is not included in the secondary 

school mathematics curriculum. Some 

studies, however, report of teaching 

proof by induction starting in upper 

secondary school (Adinata et al., 2020; 

Palla et al., 2012; National Council of 

Teachers of Mathematics, 2000) and 

these studies report that secondary 

school face various difficulties to 

understand and apply the principle of 

mathematical induction in proving 

propositions. South African students 

have a delayed start to proof by 

induction, which only starts in 

undergraduate education but it is yet to 

be seen if this helps them to understand 

induction proof better. There are no 

studies focusing South African 

undergraduate students’ construction of 

knowledge for proof by induction.  

The nature of proof by induction 

is unlike what students have seen before 

in secondary education. Indeed students 

have proved trigonometric identities and 

Euclidian geometry. Thus, Dubinsky 

(1986) posits that proof by induction 

presents cognitive obstacles and if not 

addressed, students will continue to 

struggle with it if instructional 

methodologies continue to ignore the 

obstacles. Moreover, Ernest (1984) 

notes that students have difficulty in 

producing correct proofs by induction. 

In most cases students can successfully 

determine the basis and inductive 

assumption steps procedurally, without 

thinking beyond the procedure. The two 

steps involve determining the 𝑃(1) and 

𝑃(𝑘) respectively. However, the 

induction step require students to 

construct the logical reasoning to prove 
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𝑃(𝑘 + 1) based on the assumption 

𝑃(𝑘). The induction step is to show that 

if 𝑃(𝑘) is true, then 𝑃(𝑘 + 1) is true 

also for an arbitrary 𝑘 ∈ ℕ. Moreover, 

the execution of the induction step is 

not procedural, but dependent on the 

proposition to be proved. Hence, it is 

the induction step that pose great 

difficulties to students leading to many 

cognitive challenges. These challenges 

are more pronounced in proving 

propositions involving inequalities. 

Students encounter challenges in 

coming up with the intricate algebraic 

manipulations required to arrive at the 

conclusion that 𝑃(𝑘)  ⇒  𝑃(𝑘 + 1) for 

propositions involving inequalities. 

Some important properties of 

inequalities have to be applied to prove 

propositions with inequalities. 

Moreover, the start of the proof of each 

problem is not uniform, and the success 

or failure of any proof depends on it. All 

these concerns when proving statements 

with inequalities increases the 

propensity for students’ cognitive errors 

in the proof by induction. 

Inequality propositions require 

tricks that are really useful pertaining to 

the principle of mathematical induction. 

For instance, some tricks for 

inequalities are as follows: an unequal 

quantity can be added to both sides of 

an inequality provided the quantity 

added to the smaller side is smaller than 

the quantity added to bigger side; an 

equal quantity can be added or 

subtracted to both sides of an inequality 

without violating the inequality. For 

instance, given that 𝑦 ≤ 𝑧 and 𝑚 ≤ 𝑛, 

then 𝑦 + 𝑚 ≤ 𝑧 + 𝑛 holds. Similarly, if 

𝑦 ≤ 𝑧 and 𝑚 > 0, then 𝑦 ≤ 𝑧 + 𝑚. 

And, 𝑦 + 𝑚 ≤ 𝑧 + 𝑚 is still true for 

both 𝑚 > 0 and 𝑚 < 0.  

Despite the importance of proof 

by induction and its application in logic 

and reasoning in science, engineering, 

mathematics and technology, research 

in proof by induction are uncommon. 

Moreover, among some studies that 

have been conducted in proof by 

induction, none specifically focused on 

the induction step for inequalities 

propositions. Hence the purpose of this 

study was to determine undergraduate 

students’ level of understanding of the 

induction step in proving inequality 

propositions in order to create 

opportunities to teach proof by 

induction in a better way. If students 

can master the execution of the 

induction step, then they have 

understood proof by induction. 

Basically, the induction step is the 

pinnacle in proof by induction. Thus, 

the contribution of this study is to 

provide insight into how undergraduate 

students resolve the induction step. The 

research question for this study was: 

“What are the cognitive errors displayed 

by undergraduate students on the 

induction step when proving inequality 

propositions?” 

To answer to the research 

questions, the Action-Process-Object-

Schema (APOS) theoretical framework 

and the Activities, Class discussion and 

Exercises (ACE) teaching cycles were 

engaged. These are explained in detail 

in the next section. Many studies have 

used APOS theory in calculus and other 

mathematical concepts (Borji et al., 

2018; Borji & Voskoglou, 2017) but the 

ACE teaching cycles have not been 

widely used. Most APOS studies’ focus 

has been on evaluating students’ 

understanding of a concept only, while 

excluding how instruction can impact 

students’ understanding of a 

mathematical concept. The dearth of the 

APOS-ACE instructional strategy in 

research was the motivation to explore 

the learning and teaching of the 

induction step for inequality 

propositions. 
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LITERATURE REVIEW AND 

THEORY 

Whilst there are many studies on 

proofs and reasoning in mathematics, 

literature on the proof by induction is 

scarce and most of it is outdated. One of 

the earliest studies on proof by 

induction using APOS theory was by 

Dubinsky (1986, 1990), where he 

developed a succinct genetic 

decomposition for teaching the principle 

of mathematical induction. Like in most 

APOS studies, Dubinsky taught proof 

by induction to a class following the 

precepts in the genetic decomposition 

by means of the ACE teaching cycles to 

a class of 40 students. The method of 

instruction was effective and led to 

improvements in students’ performance 

in all the miscellaneous problems that 

were posed. Hence, given the 

appropriate teaching methodologies, 

undergraduate students can successfully 

overcome cognitive obstacles in 

learning proof by induction (Dubinsky, 

1990). Dubinsky further alludes that 

once students grasp the idea of proof by 

induction, they subsequently succeed in 

proving all types of propositions. In a 

task with 400 questions given to 

students to solve, slightly over half of 

the problems were done correctly. 

Dubinsky (1990, p. 17) analysed and 

categorised students’ errors in proof by 

induction as follows: (a) unable to 

determine the proposition-valued 

function P and/or incorrect or missing 

interpretation of the value of P(n); (b) 

omits consideration of the base case; (c) 

sets up induction proof properly but 

does not succeed in proving that P(n) ⇒ 

P(n+1); (d)  miscellaneous error that 

is serious but does not make the entire 

solution worthless; (e) problem omitted 

or nothing much of value in the 

solution. The categories of errors above 

are typical of common errors by 

undergraduate students as they learn 

different categories of propositions in 

proof by induction. 

In teaching the principle of 

mathematical induction, instructors 

often use multiple theorems or 

propositions. Three most popular 

propositions used by instructors when 

introducing proof by induction to 

secondary and post-secondary students 

(Hine, 2017; Author, 2021) are general 

series, divisibility and inequalities. The 

first two are rather procedural and 

predictable hence student can do with 

action-level conception to evaluate the 

implication 𝑃(𝑘) to 𝑃(𝑘 + 1). For 

instance, Author (2021) reveal that the 

majority of students correctly used the 

idea of the proof by induction to prove 

theorems on divisibilities/multiples. To 

prove that a statement is divisible by a 

given number, it suffices to do a direct 

substitution of 𝑛 = 𝑘 + 1 in the formula 

for the induction step. This is not the 

case with inequalities which require 

intricate non-standard algebraic 

manipulations to resolve the induction 

step. On closer inspection, it is evident 

that students do not attain object-level 

conception in the principle of 

mathematical induction hence they have 

serious challenges with the induction 

step with propositions involving 

inequalities. Hine (2017) explains the 

three common types of the principle of 

mathematical induction by giving 

examples of how to prove each. 

However, being a conceptual paper, 

Hine did not elaborated how students 

would conceptualise the principle of 

mathematical induction and how they 

would overcome possible challenges. 

Furthermore, despite students being 

able to successfully apply proof by 

induction to the propositions they are 

accustomed to, they grapple to make 

sense of why proof by inductions 

works. Producing a precise proof does 

not imply that students know the 
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underlying principles of proof by 

induction. In other words, students learn 

how to apply the steps of proof by 

induction procedurally. However, such 

learning fail to foster deep 

understanding of the correctness of the 

proof whereby students fail to prove 

propositions of a different and 

challenging nature, according to 

Ashkenazi and Itzkovitch (2014). 

Some authors suppose that the 

students’ constraints in proof by 

induction may be due to limitations of 

teacher knowledge on limits. In that 

regard, Stylianides et al. (2007) 

investigated pre-service and secondary 

school teachers’ knowledge of the 

principle of mathematical induction 

with a view to determine the knowledge 

on the principle of mathematical 

induction that mathematics teachers 

need in order to teach proof by 

induction. The findings by Stylianides 

et al. (2007) indicate that pre-service 

teachers have difficulties identifying the 

basis step and the meaning attached to 

the induction step in resolving 𝑃(𝑘) ⟹
𝑃(𝑘 + 1). The two steps are key to 

success in proving statements by 

induction. The inductive hypothesis is 

obvious, requiring insignificant effort. If 

teachers encounter difficulties with the 

induction step themselves then it will be 

worse with their students. 

For proof by induction to be 

successful, the basis case must be true, 

in turn enables the assumption 𝑛 = 𝑘 to 

hold. The initial value for the basis case 

is often 𝑛 = 1 since proof by induction 

is proven for all natural numbers. 

However, depending on the proposition 

given, the basis case may be zero or any 

other natural number. If the basis case is 

implicit, verifying the given first 

element is categorised as an action in 

the APOS framework (García-Martínez 

& Parraguez, 2017). In this scenario, 

then students need the skill to figure out 

the basis case. The basis case becomes a 

process mental construction since a 

student must determine this first. The 

nuance of the basis case between the 

conceptions of process and action is 

brought to the fore and investigated by 

García-Martínez and Parraguez (2017). 

García-Martínez and Parraguez reveal 

the significance of the basis step in 

proof by induction because failure to 

construct it means that the principle of 

mathematical induction lacks substance. 

Hence, students must not under-rate the 

basis case and omit it in the proof by 

induction. Therefore, the basis and 

induction steps are determinants of the 

success of the application and 

effectiveness of proof by induction. 

   

Theoretical framework 

To investigate how undergraduate 

students understand the induction step 

and their construction of knowledge of 

proof by induction for inequalities 

propositions, this study used the tenets 

of the APOS theory both for both 

instruction and evaluation of learning. 

As a constructivist theory, APOS 

focuses on the hierarchical development 

individuals’ of mathematical knowledge 

through mental constructions and 

mechanisms that engender the 

constructions within social context. The 

actions, processes and objects constitute 

the mental structures, and these three 

are organised into a coherent mental 

structure called schema (Dubinsky & 

McDonald, 2001). In this regard, a 

concept is first conceived at the action 

level of understanding. Actions are 

transformations of existing knowledge 

which are determined externally, for 

example, explicit step-by-step 

instructions to perform an operation 

(Dubinsky & McDonald, 2001). A 

process is an implicit mental 

constructions which is a result of 

repeating an action and reflecting upon 
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it. Student who attain the process 

conception of a transformation are able 

to reverse and/or predict the steps to a 

transformation without actually doing 

them. When students become aware of a 

process as a totality and can perform 

further actions and processes to 

construct new transformations, the 

student has encapsulated the process. 

Finally, a schema is a coherent 

collection of actions, processes and 

objects as well as other related schema. 

The four mental structures are 

connected coherently to form a 

framework in students’ minds that may 

be called to solve a problem situation 

involving the mathematics concept 

under consideration (Dubinsky & 

McDonald, 2001). 

The application of APOS theory 

for evaluation of research and 

instruction is cyclic in nature as shown 

in Figure 1. The APOS theoretical 

framework is composed of three 

components, which are the theoretical 

analysis, design and implementation of 

instruction, and collection and analysis 

of data (Asiala et al., 1996). An APOS 

inquiry starts with the theoretical 

analysis, which is a researcher’s 

prediction of the likely mental structures 

of how students learn a mathematical 

concept. The researcher implores his or 

her knowledge of the mathematical 

concept and of research, and his 

expertise in the teaching and learning of 

the concept. The theoretical analysis is 

also called the genetic decomposition, 

which is regarded preliminary until it is 

tested empirically (Arnon et al, 2014) as 

shown in Figure 1. The focus of this 

study was on the induction step only, 

and this calls upon students’ object 

mental constructions. In other words, 

students encapsulate proof by induction 

by inferring the induction step 𝑛 = 𝑘 +
1 from the induction assumption 𝑛 = 𝑘. 

For inequalities, they achieve this by 

manipulating either side of the 

inequality to get the formula for 𝑛 =
𝑘 + 1. Great skill is needed to perform 

the algebraic manipulations of the 

inequality, taking into cognisance the 

basis step. The pre-schemas of 

inequalities, factorisation, laws of 

indices and simplifying algebraic 

expressions play a foundational role to 

successful execution of the induction 

step in proof by induction. 

 

 
Figure 1. The APOS framework together 

with the ACE pedagogical approach 

(modified from Asiala et al., 1996) 

 

The preliminary genetic 

decomposition guides the design and 

implementation of instruction, the next 

step in APOS theory (see Figure 1). The 

ACE teaching cycles are the 

instructional approach of the APOS 

theory. APOS theory is an off-shoot 

constructivism hence it suggests the 

ACE teaching cycles as pedagogic 

approach whereby students construct 

mathematical knowledge while working 

and discussing problems. The success or 

failure of students in resolving the 

induction step can be identified through 

the mental constructions that they 

achieve they solve problems. The 

instructor attempts to repeat the cycles 

of activities, class discussions and 

exercises until students have potentially 

developed robust mental constructions 

of the mathematical concept being 

taught in theory. It is a fact students 

may not develop expected mental 

constructions of a concept at the same 

pace and degree. The methodology 

section gives further information on the 

implementation of instruction. The 
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implementation of instruction provides 

opportunities for gathering and 

analysing data (Asiala et al., 1996), the 

last step in the APOS cycle. The results 

of the preliminary analysis of data may 

lead to a revision of the initial 

theoretical analysis and the revised 

genetic decomposition lays the 

foundation for the next iteration of 

APOS theory. The next sections of 

methodology and findings further give 

details on the collection of data and 

analysis of the same. 

 

METHODOLOGY 

The descriptive qualitative 

research methodology was used in this 

study, which sought to describe existing 

conditions according to what they were 

at the time the study was conducted 

(Yin, 2014). I was the instructor of a 

second-year calculus course where 

proof by induction was taught to a class 

of 67 students. In accordance to the 

ACE teaching cycle, I issued activities 

to be done by the students before class 

on proof by induction. Students worked 

alone remotely or in groups as blended 

learning was in effect in 2022 when this 

study was conducted. Then during class 

times using Microsoft (MS) Teams, 

whole class discussions were enacted, 

which encompassed explanations of the 

questions done in the activities and 

sometimes beyond. MS Teams classes 

lasted for 90 minutes apiece twice in a 

week. The problems worked on by the 

students in the activities were discussed 

during class discussion. As soon as each 

class ended, homework exercises were 

administered which consolidated the 

concepts that were covered in the 

activities and class discussions. The 

cycles of activities, class discussions 

and exercises were repeated until all the 

concepts under proof by induction were 

accomplished. The concepts were done 

in succession starting with the basics of 

proof by induction, proving general 

series propositions, multiples 

propositions and finally inequality 

propositions. Due to time restraints 

since the study was part of normal 

teaching, concepts were not re-taught as 

such, but the praxis of activities and 

discussions were. The next step of 

APOS theory after the implementation 

of instruction is data collection and 

analysis. Data-gathering was through a 

task-sheet consisting of two questions 

on propositions involving inequalities 

only. Item 1 was Prove that for all 𝑛 ≥
3, 𝑛2 > 2𝑛 + 3 using mathematical 

induction, and the second item was 

Prove 4𝑛−1 > 𝑛2 for 𝑛 ≥ 3 by 

mathematical induction. The items were 

carefully chosen to enable students to 

construct expected mental constructions 

indicated in the genetic decomposition 

(Ndlovu & Brijlall, 2015).  

All the 67 students registered for 

the calculus course solved the items in 

the task individually under time control. 

The written responses were scanned and 

uploaded to Moodle within the given 

time period by the individual students. 

The students’ written responses were 

analysed by paying particular attention 

to the students’ reasoning displayed as 

they solved the two problems (Radu & 

Weller, 2011). A further eight students 

were purposively selected from the 

initial 67 to take part in the semi-

structured interviews. The eight’s 

responses to the task-sheet determined 

the type and depth of the questions that 

were to be asked. Interviews sought to 

get a deeper understanding of the extent 

to which students attained or failed to 

attain the object level of mental 

constructions in doing the induction 

step for inequality statements. 

The interviews were recorded and 

transcribed by the author for similarities 

and patterns in students’ responses. The 

first step in the analysis of data involved 
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coding the frequencies for no (N), 

wrong (W), partially-correct (P) and 

correct (C) responses for each question. 

This was followed by an in-depth 

qualitative analysis on the written 

responses and the interview transcripts 

to come up with evidence of students’ 

object-level cognition in proving by 

induction propositions with inequalities. 

The written responses and transcriptions 

of the interviews were analysed 

qualitatively to reveal possible 

differences in students’ performances in 

specific tasks (Arnon et al., 2014). 

Failure to solve tasks may indicate that 

students have not made expected mental 

constructions while success may mean 

the mental structures have been made. 

Students’ mental constructions can be 

deduced from their written and 

interview responses. For anonymity in 

this analysis of results, the students 

were assigned pseudonyms A1, A2 and 

so on up to A67, but ordering had no 

significance. 

 

FINDINGS 

The frequencies of coded responses are 

shown in Table 1. 

 
Table 1: The frequencies of students’ 

performance in the task 

Response Question 

1 

Question 

2 

Total  

No  1 21 22 

Wrong 47 30 77 

Partial 

correct 

19 16 35 

Correct  0 0 0 

Total  67 67 134 

 

Question 1 results 

All students were eager to solve 

the problem, except one who did not 

attempt the question. As can be seen in 

Table 1, about 70% of the students 

attempted the question but were 

incorrect in their proofs. Their greatest 

weakness was substituting 𝑛 = 𝑘 + 1 

for 𝑛 = 𝑘 on both sides of the inequality 

and simplifying both sides to get 

varying types of proofs. However, after 

simplifying both sides, no meaningful 

conclusions could not be drawn with 

regard to proof by induction. This was 

done so by 37 students. Direct 

substitution is incorrect in proof by 

induction of inequalities because the 

statement they got after substitution in 

the formula happens to be the expected 

expression for the conclusion to be 

drawn. Having the expression 2(𝑘 +
1) + 3 on the right-hand side at the 

beginning is like working backwards 

from the conclusion. This approach 

does not also take 𝑃(𝑘) ⟹ 𝑃(𝑘 + 1) 

into consideration. These students were 

incognisance of the fact that this 

implication is the key to successful 

proof by induction. Figure 2 illustrates 

this. 

Figure 2. The error of direct substitution in 

the induction step by A37  

 

Besides those who did a direct 

substitution, five more students 

converted the proposition to a quadratic 

inequality  𝑘2 > 2𝑘 + 3, which they 

subsequently solved to get the solution 

set of 𝑘. Three students, A55, A13 and 

A23 presented written responses which 

did not consider any of the steps of 

proof by induction as shown in Figure 

3. The question was changed to one of 

solving the inequality, which they 

precisely solved. A60 and A4 initially 
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shew some efforts of the basis step and 

the inductive assumption but then 

attempted to formulate an inequality 

which they then made efforts to solve. 

Figure 3. Solving the quadratic inequality 

instead of proving by induction by A55  

 

Two students, A33 and A31 

erroneously used 𝑃(𝑘 + 2) based on 

inductive assumption of 𝑃(𝑘). This was 

obviously out of sync with domino 

effect, the underlying principle of proof 

by induction. The same error of direct 

substitution was dominant. However, 

the simplified expressions did not lead 

to a fruitful conclusion in line with the 

expectations of proof by induction as 

shown in Figure 4.  

 
Figure 4. Incorrect substitution of 𝑛 = 𝑘 +

2 for induction step by A31 

 

Moreover, A51, A56, A57, A64, 

A65 and A67 substituted both sides of 

the statement with 𝑛 = 𝑘 + 1 then 

applied the inductive assumption to the 

expansion of (𝑘 + 1)2. Afterwards they 

simplified both sides and compared the 

linear factors to which they concluded 

that 2𝑥 + 10 > 2𝑥 + 5 for 𝑛 ≥ 3. 

Figure 5 illustrates this type of proof 

which was not even taught in class nor 

found in texts.  

Figure 5. A doubtful induction step by A56. 

 The proof in Figure 5 is full of 

doubts because at some point 3 was 

substituted for 𝑘 but at one instance 

only to get 2𝑘 + 10. How was that 

justified? When a follow-up question 

was posed to A67, he said he was not 

sure of what he was doing: 

 
Researcher: Why did you substitute with 

 a three there at second step from 

 the bottom? 

A67: The question specified that 𝑛 ≥ 3. 
Researcher: But then why didn’t you 

substitute in all instances of that 𝑘 

to get a constant term on both 

sides? 

A67: I was not sure of what I was doing Sir. 

Researcher: Is this how step 3 is done in 

induction? Did we do so in class? 

A67: Uum no. I wasn’t sure of the 

method we used in class either. 

  

 In fact if A67 had substituted 3 for 

𝑘 outrightly, he would have obtained 

16 > 11 which is actually the basis 

step. Hence there is no induction step to 

talk about.  

 Again in question 1, about 28% of 

the students made some progress 

towards resolving the induction step but 

encountered some challenges.These 

students had the correct starting point 

whereby they expanded (𝑥 + 1)2 to get 

𝑥2 + 2𝑥 + 1. After this, all of them 

failed in one or another to perform 

required algebraic manipulations in 

order to get the expected formula for 

𝑛 = 𝑘 + 1 on the right-hand side of the 

inequality. Five students expanded and 
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used the inductive assumption 

implication to get 4(𝑘 + 1). But instead 

of de-lineating 2(𝑥 + 1) + 3, they 

cancelled by the common factor (𝑘 + 1) 

on both sides to solve for 𝑘 as shown in 

Figure 6.  

 
Figure 6. Partially-correct induction step 

where A58 solved for 𝑘 

  

 At the end, the conclusion given 

by A58 did not align to the basic 

expectations of the principle of 

mathematical induction. Moreover, 

some students did not bother to match 

their conclusion to the original 

statement as shown Figure 7. They were 

supposed to get the formula for 𝑛 = 𝑘 +
1, which is 2(𝑘 + 1) + 3 to complete 

the proof by induction. Instead, they got 

4(𝑘 + 1) + 3, which was also incorrect 

and did not represent the expected 

statement under the induction step. 

 
Figure 7. Partially-correct response in the 

concluding statement by A40. 

 

 All students who started with 

(𝑥 + 1)2 managed to get 2𝑘 + 3 +
2𝑘 + 1 = 4𝑘 + 4 after applying the 

inductive assumption. However, there 

was one key reasoning that students 

were supposed to have done but they all 

missed it. That step is shown in the 

complete solution for this problem in 

Figure 8. None of the students managed 

to execute the proof shown in Figure 8 

or equivalent. 

Figure 8. The correct proof for question 1 

from the marking guide. 

 

Question 2 results 

In the second question, 37 percent of 

students left the question un-done as 

shown in Table 1. In most cases, it was 

because they did not know how to 

respond or lacked the confidence to 

attempt the question. When probed in 

the interviews on why they skipped the 

induction step, two students said: 
 

A3: I did not know how to start the proof. 

A14: It was too difficult for me. 

 

 Proof by induction as a deductive 

proof is systematic, so if students 

cannot find a suitable starting point for 

the induction step, then they might not 

get the courage to do the proof 

altogether. The frequency of students 

who attempted question 2 but were 

incorrect was 45%. Their greatest 

weakness as in question 1 was to do a 

direct substitution on both sides of the 

inequality then do some uncalled for 

manipulations which do not constitute 

the principle of mathematical induction. 

Figure 9 illustrates A20’s response by 

the way of direct substitution. These 

students could not proceed 

meaningfully because they started with 

the expected statement. 

 
Figure 9. A direct substitution which did 



213 | Prihadi Kurniawan, Agus Wayan Yulianto - Development of Instructional Materials for Introduction …. 

not lead to the expected formula 

  

 In the partially-correct responses, 

24 percent of the students remembered 

to multiply by 4 on both sides of the 

inequality but failed to do the 

subsequent algebraic simplifications to 

get the expected formula for 𝑛 = 𝑘 + 1 

in the process. They did not have the 

knowhow to proceed to the end of the 

proof after a correct start. Most students 

correctly deduced the statement 4𝑘 >
4𝑘2 but simply ended there as shown in 

Figure 10. Interestingly, some students 

also arrived the statement 4𝑘 > 4𝑘2 by 

simplifying (4𝑘 =)4𝑘+1−1 to 4𝑘−1+1 =
4𝑘−1 × 4 > 4𝑘2.  

 
Figure 10. An incomplete induction step by 

A11 

  

 Five more students managed to go 

past the expression 4𝑘 > 4𝑘2. Of these, 

three made the proof so simple by 

jumping straight to the concluding 

statement 4𝑘 > (𝑘 + 1)2 without 

showing intermediate statements. They 

did not give the justification of their 

statements, which casts a doubt if they 

really knew the logic behind their 

proofs (illustrated in Figure 11).  

 
Figure 11. A simplified proof which lacks 

intermediate statements reasoning by A40  

 

 

 The remaining two students 

managed to show the correct 

intermediate statements to get 4𝑘 >
(𝑘 + 1)2 but the justification as it 

relates to inequalities was not given. 

Figure 12 depicts A56’s missing 

reasoning. The proof in Figure 8 made 

reference to the inductive hypothesis 

(written I.H) which was not applicable 

here. The correct reasoning to justify 

𝑘2 + 2𝑘2 + 𝑘2 > 𝑘2 + 2𝑘 + 1 is the 

fact that 2𝑘2 > 2𝑘 and 𝑘2 > 1 for 𝑛 ≥
3. 

 
Figure 12. A partially-correct proof by A56 

which lacked reasons 

 

 Another faulty proof was 

provided by A5 and A16, whereby they 

substituted directly 𝑛 = 𝑘 + 1 and then 

attempted to perform algebraic 

manipulations of the right-hand side. 

But their proofs had three flaws. Firstly, 

they did not justify why 𝑘2 + 2𝑘2 +
𝑘2 became 𝑘2 + 2𝑘 + 1. Secondly, the 

relationship is not always true: 𝑘2 +
2𝑘2 + 𝑘2 > 𝑘2 + 2𝑘 + 1 > (𝑘 + 1)2. 
The problem lie with the fact that 

originally 4𝑘2 = 𝑘2 + 2𝑘2 + 𝑘2was 

greater than (𝑘 + 1)2. Now there is no 

guarantee that 𝑘2 + 2𝑘 + 1 which is 

less than 4𝑘2 is absolutely greater than 

(𝑘 + 1)2. It is like saying if 𝑎 > 𝑏 and 

𝑎 > 𝑐 then 𝑏 > 𝑐. Finally, the final 

expression is obviously untrue since a 

term cannot be greater than itself. 

Figure 13 depicts these flaws. 
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Figure 13. Induction step with flaws by A16 

 

DISCUSSION 

 In the questions analysed, the total 

reasoning for the induction step was 

missing entirely. This indicates that 

there is no generalisation of the proof of 

the induction step as in the case of the 

basis and inductive assumption steps. 

There is always a unique way of 

manipulating the algebra to arrive at the 

expected formula for 𝑛 = 𝑘 + 1 and the 

special properties of inequalities comes 

to the fore. To help students encapsulate 

the induction step in proof by induction, 

practice is key. The problem-based 

approach of the ACE teaching cycles 

suggested and used in this study aptly 

provided the much needed practice. The 

students’ performance in the task-sheet 

and interviews revealed that they did 

not master the algebraic manipulations 

to get the 𝑃(𝑘 + 1) from 𝑃(𝑘) for 

inequality propositions. 

 Proving inequality propositions by 

induction relies on the transitive 

property of inequalities, which states 

that if 𝑎 < 𝑏 and 𝑏 < 𝑐 then 𝑎 < 𝑐. The 

principle of mathematical induction is 

used in proving propositions of the form 

∀𝑛𝑃(𝑛), where the domain is a set of 

natural numbers of the form of {𝑘, 𝑘 +
1, 𝑘 + 2, … }. To prove a proposition by 

induction requires two steps. The first is 

verifying the basis step 𝑃(1). However, 

if the domain is bounded by 𝑘, the basis 

step becomes 𝑃(𝑘). The basis step is 

often easy and straightforward, or rather 

trivial, hence it is not part of this study. 

The induction step comes next, which 

starts by assuming the induction 

hypothesis 𝑃(𝑘) to be true. According 

to the APOS theory, determining the 

inductive assumption is an action 

conception, which is trivial. Now, the 

truth of 𝑃(𝑘) is used to show that 

𝑃(𝑘 + 1) must also be true for the given 

domain. To prove an implication, all 

that is needed is to show is that if the 

antecedent is true then the condition is 

true also. This rule of logic represents 

an interiorisation into the modus ponens 

process conception (Dubinsky, 1986; 

Author, 2021). According to Dubinsky 

(1986, p. 308), “This last step is the 

most important but it seems that rarely 

do under-graduates even reach the point 

of being able to explain induction.” 

Students are expected to see the 

implication in totality, that is, as a 

cognitive object. The analysis of the 

induction step is corroborated the 

findings by Radu and Weller (2011) 

who said that sometimes the 

relationship between 𝑃(𝑘) and 𝑃(𝑘 +
1) is easily in-discernible to many 

students. Radu and Weller further 

hypothesised that the type of students’ 

reasoning when proving may depend on 

the contextual features of the 

proposition being proved. This study 

focused on the induction step of 

inequality propositions alone as it was 

regarded as difficult (Dubinsky, 1986) 

and the findings revealed that students’ 

cognition in them was inadequate.  The 

construction of knowledge for the 

implication of 𝑃(𝑘) to 𝑃(𝑘 + 1) does 

not occur spontaneously for most 

students.  

 One way to stimulate the students 

to learn mathematical concepts is 

through teaching which must include 

plenty of activities. The ACE teaching 
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cycles accord students practice with 

large of number of examples. The 

application of the ACE teaching cycles 

require that the mathematical concept 

under consideration be divided into 

smaller sub-topics and each iteration of 

the cycle corresponds to one of the sub-

topics. The activities done before and 

after class, as well as the whole class 

discussion form the first cycle of the 

ACE approach, whose goal is to foster 

the growth of the appropriate mental 

structures in the minds of the students 

(Voskoglou, 2013). Guided by the 

genetic decomposition, instructors 

ought to design activities that will help 

students perform reflective abstractions 

necessary to construct the necessary 

mental constructions (Dubinsky, 1990). 

To construct mental constructions, 

students must be engaged and 

cognitively active with content. In this 

study, it was the case that after students 

engaged with problems on the concept 

of proof by induction, they could not 

succeed applying this method to prove 

inequality propositions.  

 For a students to be able to think 

of an implication as an object, they 

should be able to interpret the same 

mathematical entity in at least one way. 

For instance, students approached the 

induction step of question 2 of the task-

sheet in two ways. Firstly, some 

multiplied both sides of the inductive 

assumption by 4 to obtain  

 

4𝑘 > 4𝑘2 

= 𝑘2 + 2𝑘2 + 𝑘2 

> 𝑘2 + 2𝑘 + 1  𝑠𝑖𝑛𝑐𝑒 2𝑘2 > 2 𝑎𝑛𝑑 𝑘2

> 1 𝑓𝑜𝑟 𝑘 ≥ 3 

= (𝑘 + 1)2 
Therefore, it true for 𝑛 = 𝑘 + 1, which 

completes the proof. 

 

Other students had a different 

approach to the same proof. They 

realised that the expected formula for 

𝑛 = 𝑘 + 1 is 4𝑘 > (𝑘 + 1)2. Thus, they 

started with the left-hand side 

expression 4𝑘. Then, 4𝑘 = 4𝑘−1+1 =
4𝑘−1 × 4 > 𝑘2   

× 4 𝑏𝑦 𝑡ℎ𝑒 𝑖𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑒 𝑎𝑠𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 

  

 The two ways of proving becomes 

similar at the stage where 4𝑘 > 4𝑘2, so 

that the rest of the proof is identical. All 

students were taught in the same class 

hence it took ingenuity for the few to 

come up with at least one approach to 

the proof. However, the findings 

revealed that none of the few students 

who took the two approaches managed 

to use the properties of inequalities in 

conjunction with the universe of 

discourse. When students possess full 

objection conception of a mathematical 

concept, they possess skills too to 

perform further processes and actions to 

the proofs. Manipulating inequalities in 

conjunction with the universe of 

discourse involves anticipating and 

predicting the conclusion, which makes 

it fall under the category of process 

conception. Since all students failed the 

process conception of proof by 

induction of inequalities, the object 

conception was inadequate. 

 The premise is that if students 

engage in tasks, they are reasonably 

likely to develop the mental 

constructions that leads to learning 

given mathematical concepts 

(Voskoglou, 2013). This approach is the 

APOS-ACE teaching cycles. The 

performance of students in this study for 

both the task-sheet and interviews was 

limited mainly because the induction 

step is connected to the object-level 

conception of the principle of 

mathematical induction. Developing an 

object conception of mathematics 

concepts is not an easy feat and in most 

cases takes it takes a long time (Salgado 

& Trigueros, 2015; Trigueros & 

Martinez-Plannel, 2010). Nevertheless, 
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this study bore testimony that 

instructional approaches using the 

APOS-ACE teaching cycles were 

indeed successful in assisting students 

to gain deeper understanding of 

mathematical concepts (Weller et al., 

2003). In fact, Dubinsky (1990) posited 

that students will continue to under-

perform as long as the teaching 

methodologies do not address students’ 

cognitive difficulties.  

 The study recommends more 

teaching cycles during instruction 

whenever students do not seem to make 

expected mental constructions in a 

given mathematical concept. However, 

the time to conduct more teaching 

cycles may not be available, which sees 

the implementation of APOS theory 

being time-consuming (Weyer, 2010).  

Asiala et al. (1996) allude that students 

experience cognitive growth as they 

learn a mathematical concept through 

successive refinements as the instructor 

repeatedly cycles through the 

components of the APOS theory of 

Figure 1. Lastly, students are more 

likely to conceptualise mathematical 

concepts if they are introduced through 

definitions followed by activities and 

discussions. 

 

CONCLUSION 

 This study chronicled the 

students’ shortcomings in resolving the 

induction step of inequalities 

propositions. Students were required to 

think at object level to prove the 

induction step, whereby they conceive it 

in totality. They were expected to 

perform actions and processes to this 

totality by doing relevant tricks and 

comparisons to obtain the concluding 

statement. However, students 

encountered many cognitive errors on 

the induction step. The problem-based 

instructional approach was suggested 

and implemented to enhance students’ 

understanding of proof by induction.  

By placing emphasis on problem-

solving as part of students’ construction 

of knowledge, the APOS-ACE teaching 

cycles help students develop higher 

hierarchical mental constructions of 

mathematical concepts. Moreover, the 

computational nature of mathematics 

makes this highly likely. As pertaining 

to the preliminary genetic 

decomposition for this study, it was 

adequate as a description of how the 

students learn the induction step in 

proof by induction. Therefore, no 

revisions are necessary to the genetic 

decomposition.  
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